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A three-dimensional Ising model with the plaquette-type(next-nearest-neighbor and four-spin) interactions
is investigated numerically. This extended Ising model, the so-called gonihedric model, was introduced by
Savvidy and Wegner as a discretized version of the interacting(closed) surfaces without surface tension. The
gonihedric model is notorious for its slow relaxation to the thermal equilibrium(glassy behavior), which
deteriorates the efficiency of the Monte Carlo sampling. We employ the transfer-matrix(TM) method, imple-
menting Novotny’s idea, which enables us to treat an arbitrary number of spinsN for one TM slice even in
three dimensions. This arbitrariness admits systematic finite-size-scaling analyses. Accepting the extended
parameter space by Cirilloet al., we analyzed the(multi-) criticality of the gonihedric model forNø13.
Thereby, we found that, as first noted by Cirilloet al. analytically(cluster-variation method), the data are well
described by the multicritical(crossover) scaling theory. That is, the previously reported nonstandard criticality
for the gonihedric model is reconciled with a crossover exponent and the ordinary three-dimensional-Ising
universality class. We estimate the crossover exponent and the correlation-length critical exponent at the
multicritical point asf=0.6s2d and ṅ=0.45s15d, respectively.
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I. INTRODUCTION

Study on surfaces spans a wide variety of subjects ranging
from biochemistry to high-energy physics[1,2], leading to a
very active area of research. In particular, the problem of
interacting surface gas[3–6] is of fundamental significance.
The Savvidy-Wegner(gonihedric) model [7–11] describes
the interacting closed surfaces without surface tension. The
surfaces are discretized in such a way that they are embedded
in the three-dimensional cubic lattice, and the surface faces
consist of plaquettes. The gonihedric model was introduced
as a lattice-regularized version of the string field theory[12].
However, recent developments dwell on the case of three
dimensions, aiming a potential applicability to microemul-
sions.

The gonihedric model admits a familiar representation in
terms of the Ising-spin variableshSij through the duality
transformation; namely, the plaquette surfaces are regarded
as the magnetic-domain interfaces. To be specific, the Hamil-
tonian is given by the following form:

H = J1o
ki,jl

SiSj + J2o
kki,jll

SiSj + J3 o
fi,j ,k,lg

SiSjSkSl , s1d

with finely tuned coupling constants,J1=−2k, J2=k /2, and
J3=−s1−kd /2. The Ising spinsSi = ±1 are placed at the
cubic-lattice points in three dimensions, and the summations
oki,jl, okki,jll, and ofi,j ,k,lg run over all possible nearest-
neighbor pairs, next-nearest-neighbor(plaquette diagonal)
spins, and round-a-plaquette spins, respectively. The interfa-
cial energyE of the gonihedric model is given by the for-
mula E=n2+4kn4, wheren2 is the number of links where
two plaquettes meet at a right angle(folded-link length) and
n4 is the number of links where four plaquettes meet at right
angles(self-intersection-link length). Namely, the surfaces
are subjected to a bending elasticity with a fixed strength,

and the self-avoidance is controlled by the parameterk. We
notice that the interfacial energy lacks the surface-tension
term.

Because of the absence of the surface tension, thermally
activated undulations should be promoted significantly. Such
a feature might be reflected by the phase diagram; see Fig.
1(a) [13,14]. We notice that a phase transition occurs at a
considerably low temperature quite reminiscent of that of the
two-dimensional Ising model. Moreover, for largek, the
phase transition becomes a continuous one, whose criticality
has been arousing much attention: By means of the Monte
Carlo method, Johnston and Malmini[15] obtained the criti-
cal exponentsn=1.2s1d, g=1.60s2d, andb=0.12s1d for the
self-avoidancek=1. (Here, we quoted one typical set of ex-
ponents among those reported in the literature by various

FIG. 1. (a) A schematic phase diagram for the gonihedric model
(1) is shown[13]. For largek, second-order phase transition occurs.
The criticality has been arousing much attention.(b) For an ex-
tended parameter space, Eq.(2), there emerge rich phases accom-
panying a multicritical point[22]; here, the self-avoidance param-
eterk is fixedsk=1d. In terms of this extended parameter space, the
transition point in(a) is identified with the multicritical point atj
=−0.25.
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means.) The authors claimed that the exponents bear remem-
brance to those of the two-dimensional Ising model, namely,
n=1, g=7/4, andb=1/8. On theother hand, with the Monte
Carlo method, Baiget al. [16] obtainedn=0.44s2d sk=1d
and g /n=2.1s1d sk=0.5,1d. By means of the low-
temperature series expansion, Pietig and Wegner[17] ob-
tained a=0.62s3d, b=0.040s2d, and g=1.7s2d sk=1d. With
the use of the cluster-variation method with the aid of the
Padé approximation[18–21], Cirillo et al. obtained the esti-
matesb=0.062s3d andg=1.41s2d.

Meanwhile, a subtlety of the Monte Carlo simulation in-
herent to the gonihedric model was noted by Hellmannet al.
[22]. According to them, the relaxation to the thermal equi-
librium is extremely slow, and such slow relaxation smears
out the singularity of the phase transition. In order to cope
with such slow relaxation(long autocorrelation length), they
employed the histogram Monte Carlo method. However, the
singularity of the phase transition could not be resolved sat-
isfactorily. (See also Ref.[20] for an alternative evidence of
strong metastabilities.) As a matter of fact, the gonihedric
model atk=0 reduces to the so-called ferromagneticp-spin
model, and the model has been studied extensively as a pos-
sible lattice realization of supercooled liquids and glassy be-
haviors [23–28]. In this sense, an alternative simulation
scheme other than the Monte Carlo method is desirable in
order to surmount the slow-relaxation problem and deter-
mine the critical exponents reliably.

In this paper, we develop a transfer-matrix formalism,
implementing Novotny’s idea[31–34], which enables us to
treat an arbitrary number of spinsN for one transfer-matrix
slice. This arbitrariness admits systematic finite-size-scaling
analyses.(In addition to this advantage, the transfer-matrix
calculation yields the correlation lengthj directly. Becausej
has a fixed scaling dimension, succeeding effort at the finite-
size-scaling analyses is reduced to a considerable extent.) We
also accept the idea of Cirilloet al. [19], who extended the
parameter space of the gonihedric model(1) to

J1 = − 1, J2 = − j , andJ3 = −
1 − k

4k
. s2d

(Note that for j =−0.25, the parameter space reduces to that
of the aforementioned original gonihedric model.) With re-
spect to this extended parameter space, Cirilloet al. claimed
that the above-mentioned peculiar criticality could be identi-
fied with a mere end-point singularity(multicriticality)
[29,30] of an ordinary critical line of the three-dimensional-
Ising universality class; see the critical branch of the phase
diagram shown in Fig. 1(b). Thereby, they obtained the
crossover critical exponentf=1.1s1d by means of the
cluster-variation method[19]. Our transfer-matrix simulation
supports their idea that the numerical data are well described
by the multicritical (crossover) scaling theory. We estimate
the crossover exponent and the correlation-length critical ex-
ponent asf=0.6s2d and ṅ=0.45s15d, respectively; hereafter,
we place a dot over the critical indices at the multicritical
point s j =−0.25d.

The rest of this paper is organized as follows. In Sec. II
we set up a transfer-matrix formalism for the gonihedric

model based on Novotny’s idea. In Sec. III we present the
numerical results. Taking advantage of the Novotny formal-
ism, we carry out systematic finite-size-scaling analyses. In
the last section, we present summary and discussions.

II. EXTENSION OF THE NOVOTNY METHOD TO THE
PLAQUETTE-TYPE INTERACTIONS

In this section, we present methodological details of our
numerical simulation for the gonihedric model(1). We em-
ployed Novotny’s improved version[31–33] of the transfer-
matrix method. This technique allows us to construct the
transfer matrices containing an arbitrary number of spinsN
in one transfer-matrix slice; note that in the conventional
scheme, the available system sizesN are limited for high
spatial dimensionsdù3 severely. Actually, Novotny con-
structed the transfer matrices of the Ising model fordø7
fairly systematically[34]. Such arbitrariness ofN admits sys-
tematic finite-size-scaling analyses.

In the following, we adopt Novotny’s idea to study the
gonihedric model(1). For that purpose, we extend his idea so
as to incorporate plaquette-based interactions. We restrict
ourselves to the case of three dimensionsd=3 relevant to our
concern.(The original idea of Novotny is formulated system-
atically for general dimensions, taking the advantage that
only the bond-based(nearest neighbor) interaction is in-
volved.)

We decompose the transfer matrix into the following three
components:

T = T slegd ( T splanard ( T srungd, s3d

where the symbol( denotes the Hadamard(element by el-
ement) matrix multiplication. Note that the multiplication of
the local Boltzmann weights should give rise to the total
Boltzmann factor. The decomposed parts,T slegd, T splanard, and
Tsrungd, of Eq. (3) stand for the Boltzmann weights for intra-
leg plaquettes, intraplanar plaquettes, and rung plaquettes,
respectively; see Fig. 2 as well.

First, let us consider the contribution ofT slegd. The matrix
elements are given by the formula

T ij
slegd = ki uAu jl = WSsi,1dSsi,2d

Ss j ,1dSs j ,2dWSsi,2dSsi,3d
Ss j ,2dSs j ,3d

¯ WSsi,NdSsi,1d
Ss j ,NdSs j ,1d, s4d

where the indicesi and j specify the spin configurations for
both sides of the transfer-matrix slice. More specifically, we
considerN spins for a transfer-matrix slice, and the indexi
specifies a spin configurationhSsi ,1d ,Ssi ,2d , . . . ,Ssi ,Ndj ar-
ranged along the leg; see Fig. 2. The factorWS1S2

S3S4 denotes the
local Boltzmann weight for a plaquette with corner spins
hS1, . . . ,S4j. Explicitly, it is given by the following form:

WS1S2

S3S4 = expF−
1

T
SJ1

4
sS1S2 + S2S4 + S4S3 + S3S1d

+
J2

2
sS1S4 + S2S3d +

J3

2
S1S2S3S4DG . s5d

(The denominators of the coupling constants are intended to
avoid double counting.) Here, the parameterT denotes the
temperature. It is to be noted that the componentT slegd, with
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the other components ignored, leads the transfer-matrix for
the two-dimensional gonihedric model. The other compo-
nents ofT splanard and T srungd should introduce the “interleg”
interactions so as to raise the dimensionality tod=3.

Second, we consider the component for the intraplanar
interaction. It is constructed by the following formula,

T ij
splanard = ki uAPÎNuil, s6d

where the matrixP denotes the translation operator; namely,
with the operation, a spin arrangementhSsi ,mdj is shifted to
hSsi ,m+1dj; the periodic boundary condition is imposed. An
explicit representation ofP is given afterward. Because of
the insertion ofPÎN, the plaquette interactionA bridges the
ÎNth-nearest-neighbor pairs, and so, it brings about the de-
sired interleg interactions. This is an essential idea of Novot-
ny’s work. A crucial point is that the operationPÎN is still
meaningful, even though the powerÎN is an irrational num-
ber[31–33]. This rather remarkable fact renders freedom that
one can choose an arbitrary number of spins.

An explicit representation ofPx is given as follows
[31–33]. As is well known, the eigenvalueshpkj of P belong
to the N roots of unity like expsifkd with fk=2pk/N sk
=0,1, . . . ,N−1d. The complete set of the corresponding
eigenvectors are constructed by the formulauFkl
=NFk

−1ol=1
N pk

l PluFl. Here, the sethuFlj consists of such bases
independent with respect to the translation operations, and
NFk

−1 is a normalization factor. Provided that the eigenstates
uFkl are at hand, one arrives at an explicit representation of
Px;

ki uPxu jl = o
Fk

ki uFklpk
xkFku jl. s7d

Finally, we consider the component ofT srungd. This compo-
nent is also constructed similarly. This time, however, we
need two operations ofPÎN, becauseTsrungd concerns both

sectors ofi and j (both sides of the transfer-matrix slice); see
Fig. 2. The elements are given by

T ij
srungd = ski u ^ k j udBfsPÎNuild ^ sPÎNu jldg, s8d

where the operatorB acts on the direct-product space;

ski u ^ k j udBsukl ^ ulld = p
m=1

N

WSsi,mdSs j ,md
Ssk,mdSsl,md. s9d

Putting the componentsT slegd, T splanard, andT srungd into Eq.
(3), we obtain the complete form of the transfer matrix. Ac-
tual numerical diagonalizations are performed in the follow-
ing section.

III. NUMERICAL RESULTS

In this section we survey the criticality of the gonihedric
model(1) for the extended parameter space(2) by means of
the transfer-matrix method developed in the preceding sec-
tion. In particular, we investigate the critical branch with an
emphasis on the end-point singularity atj =−0.25. We ne-
glect a possible deviation of the multicritical point fromj =
−0.25 as pointed out by the cluster-variation-method study
[19]. Such deviation is so slight that it would not affect the
multicritical analyses very seriously[19]. We treated the sys-
tem sizes up toN=13. The system sizesN are restricted to
odd numbers, for which the transfer-matrix elements consist
of real numbers[31–33].

A. Survey of the critical branch with the Roomany-Wyld
approximative beta function

To begin with, we survey the criticality of the second-
order phase boundary in Fig. 1(b). For that purpose, we cal-
culated the Roomany-Wyld approximative beta function
bRWsTd. We stress that the availability of thebRWsTd is one
of the major advantages of the transfer-matrix method. The
Roomany-Wyld beta function is given by the following for-
mula [35]:

bN
RWsTd = −

1 −
lnfjNsTd/jN−2sTdg

lnsÎN/ÎN − 2d

Î]TjNsTd]TjN−2sTd
jNsTdjN−2sTd

. s10d

Here,jNsTd denotes the correlation length for the system size
N. The correlation length is readily calculated by means of
the transfer-matrix method. That is, using the largest and
next-largest eigenvalues, namely,l1 and l2, of the transfer
matrix, we obtain the correlation lengthj=1/ lnsl1/l2d im-
mediately.

In Fig. 3 we plotted theb function b13
RWsTd for various j

with the fixed self-avoidance parameterk=2. The zero point
(fixed point) of the b function b13

RWsTd indicates the location
of the critical pointTc. In the inset of Fig. 3, we plotted the
phase-transition pointTcs jd. This phase boundary corre-
sponds to the critical branch of the phase diagram shown in
Fig. 1(b); the other phase boundaries are of first order, and

FIG. 2. Novotny invented a new scheme to construct the transfer
matrix (TM) [31–33], which allows us to treat an arbitrary number
of spinsN per one TM slice. We extend his scheme to incorporate
the plaquette-type(next-nearest-neighbor and four-spin) interac-
tions, aiming to treat the gonihedric model(1). The contributions
from the “leg,” “planar,” and “rung” interactions are considered
separately; see Eq.(3). With use of the translation operatorPÎN, we
build a bridge between theÎNth neighbor spins along the leg(in-
terleg interaction).
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the determination of them is out of the scope of the present
bN

RWsTd approach.
The slope of theb function atT=Tc yields an estimate for

the inverse of the correlation-length critical exponent 1/n. In
Fig. 3 we also presented a slope(dashed line) corresponding
to the three-dimensional-Ising universality classn=0.6294
[36] for a comparison. We see that the criticality is main-
tained to be the three-dimensional-Ising universality class for
a wide range ofj . More specifically, forj =−0.05, 0.1, 0.25,
0.4, 0.55, and 0.7, we obtained the correlation-length critical
exponent asn=0.634, 0.641, 0.643, 0.643, 0.642, and 0.642,
respectively. From this observation, we estimated the expo-
nent along the critical branch asn=0.638s5d fairly in good
agreement with the three-dimensional-Ising universality
class.

It is to be noted that, as mentioned in the Introduction, at
j =−0.25, very peculiar critical exponents have been reported
so far [15–17,19]. The above simulation result suggests that
such peculiar criticality should be realized only atj =−0.25
(critical end point). This idea was first claimed by Ref.[19]
with the cluster-variation method. In fact, on closer inspec-
tion, the b function in Fig. 3 shows a crossover behavior
such that the slope in the off-critical regime is enhanced; see
the regime ofT−Tc.3 at j =−0.05 in particular. It appears
that such a regime of enhancement is pronounced asj →
−0.25. Eventually, right atj =−0.25, a new universality ac-
companying smallṅs,nd may emerge. In the succeeding
sections, we provide further support to this issue.

For the region in close vicinity to the critical end point,
for instance, −0.25, j ,−0.2, we found that theb function
acquires unsystematic finite-size corrections; even the zero
point of bN

RWsTd disappears. In this sense, we suspect that a
direct simulation atj =−0.25 would not be very efficient.
Rather, performing simulations for a wide range ofj , we are

able to extract information concerning the end-point singu-
larity fairly reliably.

B. End-point singularity of the critical amplitude of j

In the above, we found that the universality class of the
critical branch is maintained to be that of the three-
dimensional Ising model. A notable feature is that a cross-
over to a new universality class emerges asj →−0.25. In this
section, we study this multicriticality in terms of the theory
of the crossover critical phenomenon. We read off the cross-
over exponentf from the end-point singularity of the ampli-
tude [30] of the correlation length. Namely, the correlation
length should diverge in the form

j < N±uT − Tcu−n, s11d

with the amplitude

N± ~ Ds−ṅ+nd/f. s12d

Here, the variableD denotes the distance from the multicriti-
cal pointD= j +0.25.(It is to be noted that the critical point
Tc depends onD as demonstrated in the inset of Fig. 3.) The
above formula is a straightforward consequence of the mul-
ticritical (crossover) scaling hypothesis[29,30];

j < uT − Tcu−ṅXsD/uT − Tcufd. s13d

As noted in the previous section, the dotted critical index
stands for that right at the multicritical point.

To begin with, we determine the critical amplitudeN+. In
Fig. 4, we plotted the scaled correlation lengthsT−TcdL1/n

−juT−Tcun for k=2 andj =0.3. The symbols +,3, p, h, and
j denote the system sizes ofN=5, 7, 9, 11, and 13, respec-
tively. The linear dimension of the systemL is given by
L=ÎN. In the plot, we postulated the three-dimensional-Ising
universality classn=0.6294[36]. We see that the scaled data

FIG. 3. Theb function b 13
RWsTd (10) is plotted for k=2 and

various j . For a comparison, we presented a slope(dashed line)
corresponding to the three-dimensional-Ising universality class(n
=0.6294[36]); we see that the criticality is maintained to be the
three-dimensional-Ising universality class for a wide range ofj . In
fact, from the slopes at the fixed points ofb 13

RWsTd, we obtain an
estimate for the correlation-length critical exponentn=0.638s5d;
see text for details. Inset: Plotting the zero points ofb 13

RWsTd, we
determine a phase boundaryTcs jd, which corresponds to the critical
branch in Fig. 1(b).

FIG. 4. Scaling plot for the correlation length, namely,sT
−TcdL1/n−juT−Tcun, is shown fork=2 and j =0.3. Here, we postu-
lated the three-dimensional-Ising universality classn=0.6294[36].
The symbols +,3, p, h, andj denote the system sizes ofN=5, 7,
9, 11, and 13, respectively. We confirm that the transition belongs to
the three-dimensional-Ising universality class. Furthermore, from
the plateau in the high-temperature side, we obtain an estimate for
the critical amplitudeN+=2.09s13d; see text for details.
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collapse into a scaling-function curve. We again confirm that
the phase transition belongs to the three-dimensional-Ising
universality class. In addition to this, from the limiting value
of the high-temperature side of the scaling function, we es-
timate the critical amplitude asN+=2.09s13d for k=2 and j
=0.3; more specifically, we read off the value ofN=13
around the regimesT−TcdL1/n<30, and as for an error indi-
cator, we accepted the amount of the data scatter amongN
=5, . . . ,13.

Similarly, we determinedN+ for various parameter ranges
of both j and k. In Fig. 5, we plotted the amplitudeN+ for
k=1, 2, and 4 withDs=j +0.25d varied. In the plot, we ob-
serve a clear signature of the power-law singularity as de-
scribed by Eq.(12). Hence we confirm that the cross-over
behavior (13) is realized actually around the multicritical
point j =−0.25. Moreover, in the figure, we notice that the
data fork=1, 2, and 4 almost overlap each other. It would be
rather remarkable that the amplitudeN+ itself hardly depends
on the parameterk. This fact indicates that the multicritical-
ity, namely, the singularity exponents−ṅ+nd /f, stays uni-
versal with respect to the self-avoidance parameterk. Such
universality was first reported by the series-expansion analy-
ses surveying the range ofk=0.5, . . . ,3[17].

From the slopes in Fig. 5 we obtained the singularity ex-
ponent ass−ṅ+nd /f=0.422s6d, 0.405s5d, and 0.415s7d for
k=1, 2, and 4, respectively. We estimate the singularity ex-
ponent ass−ṅ+nd /f=0.415s20d consequently.

Let us mention some remarks on this estimates−ṅ
+nd /f=0.415s20d. First, this result excludes such a possibil-
ity ṅ.n as ṅ=1.2s1d [15]. Rather, our result supports the
results ofn=0.44s2d sk=1d with the Monte Carlo method
[16] and n=0.46s1d sk=1d with the low-temperature-series-
expansion result[17]. (The latter is obtained fromȧ
=0.62s3d sk=1d [17] together with the hyperscaling relation
ȧ=2−dṅ.) Note that our preliminary survey in the preceding
section also indicates a signature ofṅ,n.

Second, postulating the valueṅ<0.45 close to the afore-
mentioned existing values, we obtain an estimate for the

crossover exponentf<0.43. The present result contradicts
the result f=1.1s1d [19] determined with the cluster-
variation method. In the succeeding section, we will provide
further support tof<0.43, performing the multicritical scal-
ing analysis based on the relation(13).

C. Multicritical scaling analysis

In the above, we obtained an estimate for the crossover
exponentf<0.43 from the power-law singularity of the am-
plitude N+, accepting the valueṅ<0.45 advocated by Refs.
[16,17]. In this section, we provide further support to these
exponents. We carry out a multicritical(crossover) scaling
analysis based on Eq.(13). For finite sizeL, the scaling-
hypothesis formula should be extended to

j = LX̃„sT − TcdL1/ṅ,DLf/ṅ
…. s14d

Based on this formula, in Fig. 6 we present the scaled data,
sT−TcdL1/ṅ−j /L, with fixed DLf/ṅ=2 andk=2. Here, we set
the exponentsṅ=0.4 andf=0.6 for which we found the best
data collapse. Surveying the parameter space beside this con-
dition, we obtained the critical exponents asṅ=0.45s15d and
f=0.6s2d. These estimates agree with the analysis in the
preceding section.

We stress that the use ofj greatly simplifies the scaling
analyses, becausej has afixed scaling dimension, namely,
flengthg1. For instance, as for other quantities such as the
susceptibility, we need to determine the exponentġ in addi-
tion to ṅ. In this sense, the present approach via the transfer
matrix is advantageous over other approaches.

IV. SUMMARY AND DISCUSSIONS

We investigated the(multi-) criticality of the gonihedric
model(1) with the extended parameter space(2). The model
is notorious for its slow relaxation to the thermal equilibrium
(glassy behavior), which deteriorates the efficiency of the
Monte Carlo sampling[22]. Aiming to surmount the diffi-

FIG. 5. Correlation-length critical amplitudeN+ (12) is plotted
for variousDs=j +0.25d andk=0.5 1, and 4. The symbols +,3, and
p stand for the self-avoidance parameterk=0.5, 1, and 4, respec-
tively. The data indicate a clear power-law singularity, Eq.(12).
From the slopes, we estimate the singularity exponent ass−ṅ
+nd /f=0.415s20d.

FIG. 6. Multicritical (crossover) scaling plot(14), sT−TcdL1/ṅ

−j /L, for k=2 andDLf/ṅ=2 is shown. Here, we setṅ=0.4 andf
=0.6, for which we found the best data collapse. The symbols +,3,
p, h, and j denote the system sizes ofN=5, 7, 9, 11, and 13,
respectively.
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culty, we employed the transfer-matrix method. We imple-
mented Novotny’s idea[31–33], extending it so as to incor-
porate the plaquette-type interactions(Sec. II). The present
approach enables us to treat an arbitrary number of spins per
one transfer-matrix slice, admitting systematic finite-size-
scaling analyses; see Fig. 4 for instance.

The transfer-matrix calculation has an advantage in that it
yields the correlation length immediately. Because the corre-
lation length has a known(fixed) scaling dimension, the sub-
sequent scaling analyses are simplified significantly. More-
over, with the correlation length, we are able to calculate the
Roomany-Wyld approximateb function b N

RWsTd (10). With
the use ofb N

RWsTd, we surveyed the critical branch of the
phase diagram(Fig. 3). Thereby, we observed that the criti-
cality is maintained to be the three-dimensional-Ising univer-
sality class all along the phase boundary. On closer inspec-
tion, we found an indication of a crossover critical
phenomenon such that the slope ofb 13

RWsTd in the off-critical
regime, typically,T−Tc.3 s j =−0.05d, acquires a notable
enhancement. This fact indicates that a multicriticality with
smaller ṅ emerges asj →−0.25. This observation supports
the claim[19] that the nonstandard criticality reported so far
[15–20] could be attributed to the end-point criticality spe-
cific to j =−0.25.

Aiming to clarify the nature of this multicriticality, we
analyzed the end-point singularity of the amplitude of the
correlation lengthN+ (12). As shown in Fig. 5, the amplitude
exhibits a clear power-law singularity, from which we ob-
tained an estimate for the singularity exponents−ṅ+nd /f
=0.415s20d. This result supports the above-mentioned obser-
vation that an inequalityṅ,n should hold, and in other
words, it excludes such a possibility ofṅ.n advocated in

Ref. [15]. Rather, our result supports the Monte Carlo simu-
lation resultṅ=0.44s2d sk=1d [16] and the low-temperature-
series-expansion resultṅ=0.46s1d sk=1d [17]. Postulating
ṅ<0.45, we arrive at an estimate for the crossover exponent
f<0.43. This exponent is to be compared with the result
f=1.1s1d determined with the cluster-variation method[19].
The discrepancy between the result[19] and ours seems to be
rather conspicuous.

We then carried out the multicritical scaling analysis(14)
in order to provide further support to our estimatef<0.43
based onṅ<0.45. We found that a good data collapse is
attained forṅ=0.4 andf=0.6 underk=2 andDLf/ṅ=2 (Fig.
6). Surveying the parameter space, we obtained the estimates
f=0.6s2d and ṅ=0.45s15d. These exponents agree with the
above-mentioned analysis via the critical amplitudeN+.

As a consequence, we confirm that the whole analyses
managed in this paper lead to a self-consistent conclusion.
Regarding the discrepancy onf, we suspect that the value
f=1.1s1d [19] might be rather inconceivable. Nevertheless,
in order to fix the multicriticality more definitely, further
elaborate investigations would be required. As a matter of
fact, a possible slight deviation of the multicritical point
from j =−0.25 was ignored throughout the present work as in
Ref. [19]. Justification of such a treatment might be desir-
able. In any case, the present approach, which is completely
free from the slow-relaxation problem, would provide a
promising candidate for a first-principles-simulation scheme
in future research.
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