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Multicriticality of the three-dimensional Ising model with plaquette interactions:
An extension of Novotny’s transfer-matrix formalism
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A three-dimensional Ising model with the plaquette-typext-nearest-neighbor and four-spinteractions
is investigated numerically. This extended Ising model, the so-called gonihedric model, was introduced by
Sawvidy and Wegner as a discretized version of the intera¢tiloged surfaces without surface tension. The
gonihedric model is notorious for its slow relaxation to the thermal equilibrigtassy behavior which
deteriorates the efficiency of the Monte Carlo sampling. We employ the transfer-rfiittixmethod, imple-
menting Novotny’s idea, which enables us to treat an arbitrary number of Bpiaos one TM slice even in
three dimensions. This arbitrariness admits systematic finite-size-scaling analyses. Accepting the extended
parameter space by Cirillet al, we analyzed thémulti-) criticality of the gonihedric model foN<13.
Thereby, we found that, as first noted by Ciridbal. analytically (cluster-variation methggdthe data are well
described by the multicriticatrossoverscaling theory. That is, the previously reported nonstandard criticality
for the gonihedric model is reconciled with a crossover exponent and the ordinary three-dimensional-Ising
universality class. We estimate the crossover exponent and the correlation-length critical exponent at the
multicritical point as¢=0.6(2) and »=0.4515), respectively.
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I. INTRODUCTION and the self-avoidance is controlled by the parametaie

. . . . notice that the interfacial energy lacks the surface-tension
Study on surfaces spans a wide variety of subjects ranging,

from blophemlstry to high-energy phy§|{:15,2], leading to a Because of the absence of the surface tension, thermally
very active area of research. In particular, the problem of

interacting surface ga8—6] is of fundamental significance activated undulations should be promoted significantly. Such
The Sawvidy-Wegnergonihedrio model [7—11] describes a feature might be reflected by the phase diagram; see Fig.

the interacting closed surfaces without surface tension. Thl(a) [13,14. We notice that a phase transition occurs at a

i ; . & nsiderably low temperature quite reminiscent of that of the
surfaces are discretized in such a way that they are embedd v@o—dimensional Ising model. Moreover, for large the

::no;g?s':hgfeiglmugtr'][zg)nﬂ\gwoliilr?ég(r:% rig((j:ietlhsv;:riﬁ(r:g dﬁ‘g:ghase transition becomes a continuous one, whose criticality
paq y 9 as been arousing much attention: By means of the Monte

as a lattice-regularized version of the string field thefdr3j. Carlo method, Johnston and Malmiis] obtained the criti-

However, recent developments dwell on the case of thregaI exponents'=1.21), y=1.602), and =0.121) for the
dimensions, aiming a potential applicability to microemm'self-avoidanceczi. (Hére vv.e quo’ted one t)l/pical set of ex-

sions. onents among those reported in the literature by various
The gonihedric model admits a familiar representation in® 9 P y
terms of the Ising-spin variable§S} through the duality K Te
transformation; namely, the plaquette surfaces are regarde A k=1
as t.he magneuc—domam mte_rfaces. To be specific, the Hamil- , paramagnetic |+
tonian is given by the following form: 1 ' .
second order PR 2
[} ’
H=32 55+, S§+J > SSSS. (D) ; .
(0.0 (in [i.jkil] ! amell 1
amellar
with finely tuned coupling constantd;=—2«, J,=«/2, and first order / ferramagnetic
J;=—(1-x)/2. The Ising spins§=+1 are placed at the ) >
cubic-lattice points in three dimensions, and the summations . 0.44 (b) -0.25 i
gy 2y and 2y run over all possible nearest- AL
neighbor pairs, next-nearest-neighb@iaquette diagonal FIG. 1. (a) A schematic phase diagram for the gonihedric model

spins, and round-a-plaquette spins, respectively. The interfas) is shown[13]. For largex, second-order phase transition occurs.
cial energyE of the gonihedric model is given by the for- The criticality has been arousing much attentiéin. For an ex-
mula E=n,+4«n,, wheren, is the number of links where tended parameter space, Eg), there emerge rich phases accom-
two plaquettes meet at a right angfelded-link length and  panying a multicritical poin{22]; here, the self-avoidance param-
n, is the number of links where four plaquettes meet at righteter is fixed («=1). In terms of this extended parameter space, the
angles(self-intersection-link length Namely, the surfaces transition point in(a) is identified with the muilticritical point af

are subjected to a bending elasticity with a fixed strengthz-0.25.
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means). The authors claimed that the exponents bear remenmodel based on Novotny’s idea. In Sec. Il we present the
brance to those of the two-dimensional Ising model, namelynumerical results. Taking advantage of the Novotny formal-
v=1,y=7/4, andB=1/8. On theother hand, with the Monte ism, we carry out systematic finite-size-scaling analyses. In
Carlo method, Baiget al. [16] obtainedv=0.442) (k=1) the last section, we present summary and discussions.

and y/v=2.1(1) (k=0.5,1). By means of the low-
temperature series expansion, Pietig and Wedh&} ob-
tained =0.623), 8=0.0402), and y=1.7(2) (k=1). With

the use of the cluster-variation method with the aid of the
Padé approximatiofil8—21], Cirillo et al. obtained the esti- In this section, we present methodological details of our
matesB=0.0623) and y=1.412). numerical simulation for the gonihedric moddl). We em-

Meanwhile, a subtlety of the Monte Carlo simulation in- ployed Novotny’s improved versiof81-33 of the transfer-
herent to the gonihedric model was noted by Hellmahal. ~ matrix method. This technique allows us to construct the
[22]. According to them, the relaxation to the thermal equi-transfer matrices containing an arbitrary number of spins
librium is extremely slow, and such slow relaxation smeardn one transfer-matrix slice; note that in the conventional
out the singularity of the phase transition. In order to copescheme, the available system siZ¢sare limited for high
with such slow relaxatioiflong autocorrelation lengghthey  spatial dimensiongi=3 severely. Actually, Novotny con-
employed the histogram Monte Carlo method. However, thestructed the transfer matrices of the Ising model des 7
singularity of the phase transition could not be resolved satfairly systematically{34]. Such arbitrariness di admits sys-
isfactorily. (See also Ref{20] for an alternative evidence of tematic finite-size-scaling analyses.
strong metastabilities As a matter of fact, the gonihedric In the following, we adopt Novotny’s idea to study the
model atk=0 reduces to the so-called ferromagnetispin  gonihedric mode{1). For that purpose, we extend his idea so
model, and the model has been studied extensively as a poas to incorporate plagquette-based interactions. We restrict
sible lattice realization of supercooled liquids and glassy beeurselves to the case of three dimensidrS8 relevant to our
haviors [23-2§. In this sense, an alternative simulation concern(The original idea of Novotny is formulated system-
scheme other than the Monte Carlo method is desirable iatically for general dimensions, taking the advantage that
order to surmount the slow-relaxation problem and deteronly the bond-basednearest neighbgrinteraction is in-
mine the critical exponents reliably. volved)

In this paper, we develop a transfer-matrix formalism, We decompose the transfer matrix into the following three
implementing Novotny’'s ide§31-34, which enables us to components:
treat an arbitrary number of spim¢ for one transfer-matrix
slice. This arbitrariness admits systematic finite-size-scaling T=TOQ TR QT WY, 3
analyses(In addition to this advantage, the transfer-matrixwhere the symbo® denotes the Hadamarelement by el-
calculation yields the correlation lengéidirectly. Becaus&  emenj matrix multiplication. Note that the multiplication of
has a fixed scaling dimension, succeeding effort at the finitethe local Boltzmann weights should give rise to the total
size-scaling analyses is reduced to a considerable exéat. Boltzmann factor. The decomposed paft§e?, T (Plana gng
also accept the idea of Cirillet al. [19], who extended the T(rung), of Eq (3) stand for the Boltzmann We|ghts for intra-

Il. EXTENSION OF THE NOVOTNY METHOD TO THE
PLAQUETTE-TYPE INTERACTIONS

parameter space of the gonihedric modglto leg plaquettes, intraplanar plaquettes, and rung plaquettes,
respectively; see Fig. 2 as well.
3=-1, J,=-j, andls=- 1-x 2) First, let us consider the contribution ©f'®9. The matrix

elements are given by the formula

(Note that forj=-0.25, the parameter space reduces to that T @ =(i|Aj) =W S/ FWEI23!3 - - WEINS/ S, (4)

of the aforementioned original gonihedric mogéith re- o ) ) _ _ _

spect to this extended parameter space, Cielal. claimed ~ Where the indices andj specify the spin configurations for
that the above-mentioned peculiar criticality could be identi-Poth sides of the transfer-matrix slice. More specifically, we
fied with a mere end-point singularitymulticriticalityy ~ considerN spins for a transfer-matrix slice, and the index
[29,37 of an ordinary critical line of the three-dimensional- SPecifies a spin configuratigi®(i, 1),S(,2), ... ,S(i,N)} ar-
Ising universality class; see the critical branch of the phaséanged along the leg; see Fig. 2. The fadtd¥2! denotes the
diagram shown in Fig. (b). Thereby, they obtained the local Boltzmann weight for a plaquette with corner spins
crossover critical exponentp=1.1(1) by means of the {Si,...,Si. Explicitly, it is given by the following form:
cluster-variation methoflL9]. Our transfer-matrix simulation

. . . 1/3J
supports th(_a|r_|Qea that the numer!cal data are well d_escrlbed W%g; = exp[— $<Zl(3152 +55,+55+5S)
by the multicritical (crossover scaling theory. We estimate

the crossover exponent and the correlation-length critical ex- 3 Js

ponent asp=0.6(2) andv=0.4515), respectively; hereafter, + 5(5184 +S,S;) + 531528384)} . (5)

we place a dot over the critical indices at the multicritical

point (j=-0.25. (The denominators of the coupling constants are intended to

The rest of this paper is organized as follows. In Sec. llavoid double counting.Here, the parametef denotes the
we set up a transfer-matrix formalism for the gonihedrictemperature. It is to be noted that the comporieff?, with
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,"\ "‘~ /‘\ IN sectors of andj (both sides of the transfer-matrix slicsee
I (A ) ) Fig. 2. The elements are given by
rol Y P ] N . . NI: NI;
S (0 PRI S / N spins T =il @ GhBIPNi) © PN, (®)
o7 /’T(pllalnar) ) ,/ where the operatdB acts on the direct-product space;
; b "
T(qu) L . . m+ /N N
f /TR (il @ (ihB(ky @ 1)) = TT Waimsm- )
/ m ;MmN m=1
! I N
//\_:’ //"'I \_+ Putting the components (leg T (plana) gnd T (Un9 jnto Eq.
L ; , (3), we obtain the complete form of the transfer matrix. Ac-
- t- t- tual numerical diagonalizations are performed in the follow-

FIG. 2. Novotny invented a new scheme to construct the transfel9 section.
matrix (TM) [31-33, which allows us to treat an arbitrary number
of spinsN per one TM slice. We extend his scheme to incorporate
the plaquette-typgnext-nearest-neighbor and four-spimterac-
tionS, aiming to treat the gonihedriC mO(tGJ) The contributions In this section we survey the Cr|t|ca||ty of the gonihedric
from the “leg,” “planar,” and “rung” interactions are considered model (1) for the extended parameter spa2g by means of
separately; see EB). With use of the translation operatBr", we  the transfer-matrix method developed in the preceding sec-
build a bridge between theNth neighbor spins along the 16 {jon |y particular, we investigate the critical branch with an
terleg interaction emphasis on the end-point singularity jat—0.25. We ne-

glect a possible deviation of the multicritical point frops

the other components ignored, leads the transfer-matrix for0.25 as pointed out by the cluster-variation-method study
the two-dimensional gonihedric model. The other compo{19]. Such deviation is so slight that it would not affect the
nents of T (Plan@ and T ("9 should introduce the “interleg” multicritical analyses very seriousfit9]. We treated the sys-

Ill. NUMERICAL RESULTS

interactions so as to raise the dimensionalitylta3. tem sizes up tdN=13. The system sizel are restricted to
Second, we consider the component for the intraplanagdd numbers, for which the transfer-matrix elements consist
interaction. It is constructed by the following formula, of real numberg31-33.
TP = GlAP N, (6)

A. Survey of the critical branch with the Roomany-Wyld
where the matriX? denotes the translation operator; namely, approximative beta function

with the operation, a spin arrangemé8sti,m)} is shifted to
{Si MM+ 1)}; the pe”.Od'C boyndgry condition is imposed. An order phase boundary in Fig¢h. For that purpose, we cal-
explicit representation oP is given afterward. Because of culated the Roomany-Wyld approximative beta function
the insertion OfP.\N’ the plaquette interactioA bridges the éBRW(T). We stress that the availability of thgR"(T) is one
vNth-nearest-neighbor pairs, and so, it brings about the deje .\, major advantages of the transfer-matrix method. The

sired interleg interactions. This is an essential idea of NOVOtRoomany-Wyld beta function is given by the following for-

To begin with, we survey the criticality of the second-

ny’s work. A crucial point is that the operatioR™N is still mula [35]:
meaningful, even though the poweN is an irrational num- |
ber[31-33. This rather remarkable fact renders freedom that IN[E(T) Ena(T)]
one can choose an arbitrary number of spins. 1 _m
An explicit representation ofP* is given as follows BrRMT) =- ‘ : (10
[31-33. As is well known, the eigenvalugg,} of P belong \/5T§N(T)0T§N—2(T)
to the N roots of unity like exgid,) with ¢=27k/N (k EN(T) Enao(T)

=0,1,... N-1). The complete set of the corresponding Here, &\(T) denotes the correlation length for the system size

eigenvectors are constructed by the formuld,) . . .
-1gN I pl . N. The correlation length is readily calculated by means of
N(pk2|:1 PiP|@). Here, the sef|®)} consists of such bases the transfer-matrix method. That is, using the largest and

infjlependent Wit.h respect to LS trfinslation opergtions, ar‘tqext—largest eigenvalues, namely, and \,, of the transfer
Ngy is @ normalization factor. Provided that the eigenstate atrix, we obtain the correlation leng#f¥ 1/In(\;/\,) im-

|®,) are at hand, one arrives at an explicit representation o ediately.

P In Fig. 3 we plotted thes function B5(T) for variousj

with the fixed self-avoidance parameter2. The zero point
(fixed poiny of the B function BYT) indicates the location

of the critical pointT,. In the inset of Fig. 3, we plotted the
Finally, we consider the component ®f"""9. This compo- phase-transition poinfl(j). This phase boundary corre-
nent is also constructed similarly. This time, however, wesponds to the critical branch of the phase diagram shown in
need two operations oP'N, becauseT™"9 concerns both Fig. 1(b); the other phase boundaries are of first order, and

([P = % (i Dp Pl @)
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FIG. 3. The g function 8 T¥T) (10) is plotted for k=2 and

various j. F.or a comparison,.we p.resente.d a slqpashgd ling —TILY = ET-T,J", is shown fork=2 andj=0.3. Here, we postu-
corresponding to the three-dimensional-Ising universality class lated the three-dimensional-Ising universality clas<0.6294[36].

=0.6294[36]); we see that the criticality is maintained to be the The symbols +x, *, [, andBl denote the system sizesNES5, 7
three-dimensional-Ising universality class for a wide rangg. dfi S, .

fact, from the slopes at the fixed points 5fng(T), we obtain an
estimate for the correlation-length critical exponernt0.6385);
see text for details. Inset: Plotting the zero pointsadh{(T), we
determine a phase boundary(j), which corresponds to the critical
branch in Fig. 1b).

FIG. 4. Scaling plot for the correlation length, name(y,

9, 11, and 13, respectively. We confirm that the transition belongs to
the three-dimensional-Ising universality class. Furthermore, from

the plateau in the high-temperature side, we obtain an estimate for
the critical amplitudeN*=2.0913); see text for details.

able to extract information concerning the end-point singu-

the determination of them is out of the scope of the presenlf31 rity fairly reliably.

BRMT) approach. o _ - _
The slope of thes function atT=T, yields an estimate for B. End-point singularity of the critical amplitude of £

the inverse of the correlation-length critical exponent.llh In the above, we found that the universality class of the
Fig. 3 we also presented a slofmashed lingcorresponding  critical branch is maintained to be that of the three-
to the three-dimensional-Ising universality clags0.6294  dimensional Ising model. A notable feature is that a cross-
[36] for a comparison. We see that the criticality is main- over to a new universality class emergeg as—0.25. In this
tained to be the three-dimensional-Ising universality class fosection, we study this multicriticality in terms of the theory
a wide range of. More specifically, forj=-0.05, 0.1, 0.25, of the crossover critical phenomenon. We read off the cross-
0.4, 0.55, and 0.7, we obtained the correlation-length criticabyver exponent from the end-point singularity of the ampli-
exponent ag=0.634, 0.641, 0.643, 0.643, 0.642, and 0.642tude [30] of the correlation length. Namely, the correlation
respectively. From this observation, we estimated the expdength should diverge in the form

nent along the critical branch as=0.6385) fairly in good

agreement with the three-dimensional-Ising universality E~NT-T{7, 1y
class. , _ _ with the amplitude

It is to be noted that, as mentioned in the Introduction, at _
j=-0.25, very peculiar critical exponents have been reported N* oc ACT/e, (12

so far[15-17,19. The above simulation result suggests that
such peculiar criticality should be realized onlyjat—-0.25
(critical end poin). This idea was first claimed by RgfL9]
with the cluster-variation method. In fact, on closer inspec
tion, the B function in Fig. 3 shows a crossover behavior
such that the slope in the off-critical regime is enhanced; se
the regime ofT-T.>3 atj=-0.05 in particular. It appears £~ |T =T XANT-TJ9. (13)
that such a regime of enhancement is pronounceg-as
-0.25. Eventually, right af=-0.25, a new universality ac- As noted in the previous section, the dotted critical index
companying small(<») may emerge. In the succeeding Stands for that right at the multicritical point.
sections, we provide further support to this issue. ~To begin with, we determine the critical amplitubié. In

For the region in close vicinity to the critical end point, Fig- 4, we plotted the scaled correlation lengih-T)L'
for instance, —0.25 j <-0.2, we found that theg function ~ —&T—T¢|” for k=2 andj=0.3. The symbols +X, *, [J, and
acquires unsystematic finite-size corrections; even the ze/ denote the system sizes W5, 7, 9, 11, and 13, respec-
point of BR™T) disappears. In this sense, we suspect that dvely. The linear dimension of the systemis given by
direct simulation atj=-0.25 would not be very efficient. L=yN. In the plot, we postulated the three-dimensional-Ising
Rather, performing simulations for a wide rangej pive are  universality class’=0.6294[36]. We see that the scaled data

Here, the variablé& denotes the distance from the multicriti-
cal pointA=j+0.25.(It is to be noted that the critical point
T. depends om\ as demonstrated in the inset of Fig) Bhe
above formula is a straightforward consequence of the mul-
g’critical (crossover scaling hypothesi§?29,30;
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FIG. 5. Correlation-length critical amplitudé® (12) is plotted
for variousA(=j+0.25 and«=0.5 1, and 4. The symbols ¥, and FIG. 6. Multicritical (crossovey scaling plot(14), (T-ToLY"
* stand for the self-avoidance parameker0.5, 1, and 4, respec- -¢/L, for k=2 andAL#”=2 is shown. Here, we sét=0.4 and¢
tively. The data indicate a clear power-law singularity, Ebp). =0.6, for which we found the best data collapse. The symbols,+,
From the slopes, we estimate the singularity exponeni-as #, (1, and @ denote the system sizes bi=5, 7, 9, 11, and 13,

+v)/ $=0.41520). respectively.

collapse into a scaling-function curve. We again confirm thal, ossqyer exponenp~0.43. The present result contradicts
the phase transition belongs to the three-dimensional-Ising,o egyit $#=1.1(1) [19] determined with the cluster-

upi%ersha}li'tﬁ/ class. In addit!gn tof ”;]is’ frorlr_1 th? IimiFing value variation method. In the succeeding section, we will provide
0 the hig -tgmperaturg side °+t e scaling function, WE €Sturther support tap=0.43, performing the multicritical scal-
timate the critical amplitude ad*=2.0913) for k=2 andj ing analysis based on the relatietB)

=0.3; more specifically, we read off the value bf=13
around the regiméT-T,)LY*~30, and as for an error indi-
cator, we accepted the amount of the data scatter arihong
=5,...,13. In the above, we obtained an estimate for the crossover
Similarly, we determined\* for various parameter ranges exponentp=~0.43 from the power-law singularity of the am-
of both j and . In Fig. 5, we plotted the amplitudd* for  plitude N*, accepting the value~0.45 advocated by Refs.
k=1, 2, and 4 withA(=j+0.29 varied. In the plot, we ob- [16,17. In this section, we provide further support to these
serve a clear signature of the power-law singularity as deexponents. We carry out a multicriticetrossovey scaling
scribed by Eq(12). Hence we confirm that the cross-over analysis based on Eq13). For finite sizeL, the scaling-
behavior (13) is realized actually around the multicritical hypothesis formula should be extended to
point j=-0.25. Moreover, in the figure, we notice that the ~ . .
data fork=1, 2, and 4 almost overlap each other. It would be E=LX((T=TYLM",AL?Y). (14)

rather remarkable that the amplitublé itself hardly depends  gased on this formula, in Fig. 6 we present the scaled data,
on the parametex. This fact indicates that the multicritical- (T-TILY"—¢/L, with fixed AL??=2 andx=2. Here, we set

ity, namely, the singularity exponeritv+v)/ ¢, stays uni- 0 oy nonents=0.4 ande=0.6 for which we found the best
versal with respect to the self-avoidance parameteéBuch a4 collapse. Surveying the parameter space beside this con-
universality was first reported by the series-expansion a”alydition, we obtained the critical exponents &s0.4515) and

ses surveying the range @=0.5,...,3[17]. $=0.62). These estimates a . L
o . . . =0.62). gree with the analysis in the
From the slopes in Fig. 5 we obtained the singularity ex'preceding section.

ponent as(-»+1)/¢=0.4226), 0.40%5), and 0.417) for We stress that the use @fgreatly simplifies the scaling

k=1, 2, and 4, respectively. We estimate the singularity €X3nal . ; : :
g - yses, becausghas afixed scaling dimension, namely,
ponent as-v+v)/ $=0.41520) consequently. [lengthl. For instance, as for other quantities such as the

Let us mention some remarks on this estimate’  g,qcentibility, we need to determine the expongin addi-
*+v)/$=0.41520). First, this result excludes such a possibil- tjo 1 ;. In this sense, the present approach via the transfer

ity v>v as v=1.21) [15]. Rather, our result supports the mayrix is advantageous over other approaches.
results of v=0.442) (k=1) with the Monte Carlo method
[16] and v=0.461) («=1) with the low-temperature-series-
expansion result[17]. (The latter is obtained froma
=0.623) («k=1) [17] together with the hyperscaling relation ~ We investigated thémulti-) criticality of the gonihedric
a=2-dv.) Note that our preliminary survey in the preceding model(1) with the extended parameter sp&2g The model
section also indicates a signatureiof v. is notorious for its slow relaxation to the thermal equilibrium
Second, postulating the value=0.45 close to the afore- (glassy behavigr which deteriorates the efficiency of the
mentioned existing values, we obtain an estimate for thé/onte Carlo sampling22]. Aiming to surmount the diffi-

C. Multicritical scaling analysis

IV. SUMMARY AND DISCUSSIONS
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culty, we employed the transfer-matrix method. We imple-Ref. [15]. Rather, our result supports the Monte Carlo simu-
mented Novotny’s ide§31-33, extending it so as to incor- lation resultr=0.442) (k=1) [16] and the low-temperature-
porate the plaquette-type interactiof®ec. ). The present series-expansion resukt=0.461) (x=1) [17]. Postulating
approach enables us to treat an arbitrary number of spins pgt=0.45, we arrive at an estimate for the crossover exponent
one transfer-matrix slice, admitting systematic finite-size-~0.43. This exponent is to be compared with the result
scaling analyses; see Fig. 4 for instance. ¢=1.1(1) determined with the cluster-variation meth®].

The transfer-matrix calculation has an advantage in that iThe discrepancy between the rega®] and ours seems to be
yields the correlation length immediately. Because the correrather conspicuous.
lation length has a knowfixed) scaling dimension, the sub- e then carried out the multicritical scaling analygig)
sequent scaling analyses are simplified significantly. Morein order to provide further support to our estimate=0.43
over, with the correlation length, we are able to calculate theyased ony~0.45. We found that a good data collapse is
Roomany-Wyld approximatg function 85(T) (10). With  attained fory=0.4 and$=0.6 underc=2 andAL#"=2 (Fig.
the use of8"(T), we surveyed the critical branch of the 6). Surveying the parameter space, we obtained the estimates
phase diagrangFig. 3). Thereby, we observed that the criti- $=0.62) and v=0.4515). These exponents agree with the
cality is maintained to be the three-dimensional-Ising univerabove-mentioned analysis via the critical amplitife
sality class all along the phase boundary. On closer inspec- As a consequence, we confirm that the whole analyses
tion, we found an indication of a crossover critical managed in this paper lead to a self-consistent conclusion.
phenomenon such that the slope@f3(T) in the off-critical ~ Regarding the discrepancy ah we suspect that the value
regime, typically, T-T.>3 (j=-0.05, acquires a notable ¢=1.1(1) [19] might be rather inconceivable. Nevertheless,
enhancement. This fact indicates that a multicriticality within order to fix the multicriticality more definitely, further
smaller v emerges ag— —0.25. This observation supports elaborate investigations would be required. As a matter of
the claim[19] that the nonstandard criticality reported so farfact, a possible slight deviation of the multicritical point
[15-2Q could be attributed to the end-point criticality spe- from j=-0.25 was ignored throughout the present work as in
cific to j=-0.25. Ref. [19]. Justification of such a treatment might be desir-

Aiming to clarify the nature of this multicriticality, we able. In any case, the present approach, which is completely
analyzed the end-point singularity of the amplitude of thefree from the slow-relaxation problem, would provide a
correlation lengttiN* (12). As shown in Fig. 5, the amplitude promising candidate for a first-principles-simulation scheme
exhibits a clear power-law singularity, from which we ob- in future research.
tained an estimate for the singularity exponéni+v)/ ¢
=0.41520). This result supports the above-mentioned obser- ACKNOWLEDGMENTS
vation that an inequalityy<v should hold, and in other This work was supported by Grant-in-Aid for Young Sci-
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